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Abstract

Background/Objective.—Research suggests gestational exposure to particulate matter ≤ 2.5 

μm (PM2.5) and extreme heat may independently increase risk of birth defects. We investigated 

whether duration of gestational extreme heat exposure modifies associations between PM2.5 

exposure and specific congenital heart defects (CHDs). We also explored nonlinear exposure-

outcome relationships.

Methods.—We identified CHD case children (n = 2,824) and non-malformed live-birth control 

children (n = 4,033) from pregnancies ending between 1999 and 2007 in the National Birth 

Defects Prevention Study, a U.S. population-based multicenter case-control study. We assigned 

mothers 6-week averages of PM2.5 exposure during the cardiac critical period (postconceptional 

weeks 3–8) using the closest monitor within 50 kilometers of maternal residence. We assigned a 

count of extreme heat days (EHDs, days above the 90th percentile of daily maximum temperature 

for year, season, and weather station) during this period using the closest weather station. 

Using generalized additive models, we explored logit-nonlinear exposure-outcome relationships, 

concluding logistic models were reasonable. We estimated joint effects of PM2.5 and EHDs on six 

CHDs using logistic regression models adjusted for mean dewpoint and maternal age, education, 

and race/ethnicity. We assessed multiplicative and additive effect modification.

Results.—Conditional on the highest observed EHD count (15) and at least one critical period 

day during spring/summer, each 5 μg/m³ increase in average PM2.5 exposure was significantly 

associated with perimembranous ventricular septal defects (VSDpm; OR: 1.54 [95% CI: 1.01, 

2.41]). High EHD counts (8+) in the same population were positively, but non-significantly, 

associated with both overall septal defects and VSDpm. Null or inverse associations were 

observed for lower EHD counts. Multiplicative and additive effect modification estimates were 

consistently positive in all septal models.

Conclusions.—Results provide limited evidence that duration of extreme heat exposure 

modifies the PM2.5-septal defects relationship. Future research with enhanced exposure 

assessment and modeling techniques could clarify these relationships.

Graphical Abstract

Simmons et al. Page 2

Sci Total Environ. Author manuscript; available in PMC 2023 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

particulate matter; temperature extremes; birth outcomes; congenital heart defects

1. Introduction

Congenital heart defects (CHDs) are the most commonly reported group of birth defects 

(van der Linde et al., 2011), broadly defined as developmental abnormalities present at birth 

in the heart or nearby blood vessels (American Heart Association, 2020). Global prevalence 

estimates for CHDs range from 9 to 18 per 1,000 live births (Liu et al., 2019; Zimmerman 

et al., 2020), with estimates in the U.S. and Canada around 12 per 1,000 (Zimmerman et al., 

2020). CHDs have complex etiologies: only 20 percent of cases are attributable to known 

genetic and environmental factors (Blue et al., 2012).

Few potential risk factors for CHDs are as widespread as exposure to airborne pollutants, 

although ambient concentrations vary spatially and temporally (Bell et al., 2007), leading to 

heterogeneity in maternal exposure levels. Associations between PM2.5 and specific CHDs 

have been reported previously, but estimates are inconsistent across studies. CHDs with 

observed, positive relationships with PM2.5 include transposition of the great arteries (Padula 

et al., 2013), hypoplastic left heart syndrome (Stingone et al., 2014), interrupted aortic arch, 

non-isolated truncus arteriosus, total anomalous pulmonary venous return, coarctation of the 

aorta (Tanner et al., 2015), atrial septal defects, endocardial cushion defect, and pulmonary 

artery and valve stenosis (Huang et al., 2019). However, studies have also reported less 

consistent findings. A recent meta-analysis found little evidence of associations between 

ambient pollutants—including PM2.5—and CHDs, but studies included were geographically 

and methodologically heterogenous (Ma et al., 2021). Studies have also found inverse 

associations between PM2.5 and certain CHDs. In samples distinct from those in this 

study, Agay-Shay et al. (2013) reported inverse PM2.5 associations with isolated patent 

ductus arteriosus; Schembari (2014) with ventricular septal defects; and Vinikoor-Imler et al. 

(2015) with septal and obstructive defects. Prior analyses within the National Birth Defects 

Prevention Study (NBDPS)—the source of our study population—have also reported inverse 

associations between PM2.5 and atrial septal defects (Padula et al., 2013; Stingone et al., 

2014).
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Research has also explored maternal exposure to high ambient temperature as a risk factor 

for CHDs. Broadly, unusually high temperatures and extreme heat events (EHEs) have both 

been linked to negative health outcomes, including adverse birth outcomes (He et al., 2016; 

Zhang et al., 2017; Haghighi et al., 2021) and mortality (Gasparrini and Armstrong, 2011; 

Mora et al., 2017). A small number of recent studies have specifically investigated exposure 

to EHEs as a potential risk factor for CHDs, a biologically plausible relationship given the 

well-documented teratogenic effects of fetal heat exposure (Bennett, 2010; Edwards et al., 

2003; Milunsky et al., 1992). Studies linking EHEs and CHDs have consistently reported 

positive associations with septal defects (K Agay-Shay et al., 2013; Auger et al., 2017; Lin 

et al., 2018), with one also reporting positive associations with conotruncal defects (Lin et 

al., 2018).

As global mean temperatures rise and extreme climatic events become more common (Jones 

et al., 2015; Watts et al., 2021), prevalence of CHDs resulting from extreme heat may 

increase (Zhang et al., 2019). Complex relationships between air pollution, climate, and 

health are of concern, having been noted widely in research and high-level policy (WHO, 

2018). Synergistic effects between PM2.5 and temperature have been reported, with extreme 

temperatures worsening the effects of ambient pollution exposure on health outcomes (Chen 

et al., 2018; Kioumourtzoglou et al., 2015; Stafoggia et al., 2008; Zanobetti and Peters, 

2015; Zhang et al., 2018). However, there is uncertainty as to the mechanisms underlying 

modification of pollutant-related health effects by meteorological factors. Some suggest 

this is mainly due to changes in population behavior between warmer and colder seasons, 

which leads to variations in personal exposure (Hänninen and Jantunen, 2007). Particulate 

matter has also been shown to vary in composition by season, which may contribute to this 

modification (Bell et al., 2007). Others have suggested that physiological stress responses 

to extreme heat may increase susceptibility to ambient pollutants (Gordon, 2003). Finally, 

biological pathways of synergy remain feasible because particulate matter and extreme heat 

may share teratogenic pathways (Bennett, 2010; Tanwar et al., 2017; Wu et al., 2019).

Most published research on interactions between air pollution and extreme heat has focused 

on associations with aggregate health outcomes, such as emergency department visits (Chen 

et al., 2018) or mortality count (Chen et al., 2018; Kioumourtzoglou et al., 2015; Stafoggia 

et al., 2008; Zanobetti and Peters, 2015; Zhang et al., 2018). A recent U.S.-based study 

from our research group (Stingone et al., 2019) was the first to analyze PM2.5-EHE 

interactions with respect to CHDs, finding that ventricular septal defects were associated 

with PM2.5 exposure only among mothers exposed to an EHE. Another recent study based in 

Changsha, China (Jiang et al., 2021) also reported interaction effects between ambient heat 

exposure and multiple pollutants, including PM2.5, on overall CHDs. However, a limitation 

of both studies was their use of dichotomized measures of maternal PM2.5 and/or heat 

exposure, whereas research has demonstrated complex dose-response relationships between 

PM2.5, heat, and various health outcomes (Chen et al., 2018; Daniels, 2000; Dejmek et 

al., 1999; Gasparrini et al., 2015; Vodonos et al., 2018; Zanobetti and Peters, 2015). To 

capture these complexities, the current study analyzes the same sample used in Stingone et 

al.’s 2019 research, expanding on this prior study in two ways. First, we use continuous 

operationalizations for maternal PM2.5 and extreme heat exposures (see Section 2.2), which 

avoids loss of power and potential bias introduced by categorization of explanatory variables 
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(Royston et al., 2006). Second, we investigate whether logit-linearity assumptions imposed 

by logistic regression models are reasonable in estimating PM2.5-heat-CHD relationships 

(see Section 2.4), because the independent and joint effects of these exposures on CHDs 

may be more accurately estimated using more flexible models.

Thus, our objective in this study was to further characterize the complex relationships 

and potential interactions between PM2.5 and extreme heat in two ways: first, by 

exploring nonlinear relationships between these exposures and CHDs using generalized 

additive models (GAMs); and second, by modeling the joint effects of these exposures 

operationalized as continuous measures.

2. Methods

2.1 Study design and population.

We used data from study participants in the National Birth Defects Prevention Study 

(NBDPS), a U.S. population-based multicenter case-control study aimed at understanding 

causes of birth defects. Details of the NBDPS design and methods have been described 

elsewhere (Reefhuis et al., 2015). Briefly, NBDPS case children included infants, stillbirths 

(gestational age > 20 weeks or fetal weight > 500 grams), and induced termination 

pregnancies with a diagnosis of at least one of 37 eligible birth defects. Case children 

with disorders of known etiology were excluded, as the primary goal of the NBDPS is to 

find causes of birth defects. Control children were randomly selected infants without birth 

defects and located at the same study site (i.e., an entire U.S. state or selected counties 

within one U.S. state) as case children. Control children were sampled from the same 

at-risk populations from which case children originated, using birth hospital records or vital 

records. Monthly totals for selected control children were proportional in size to the number 

of same-month, prior-year births.

The subpopulation we drew from the NBDPS for this study has been described previously 

(Stingone et al., 2019). We included case and control children from eight of the ten 

NBDPS study centers with estimated dates of delivery between January 1, 1999 (U.S. states 

Arkansas, California, Georgia, Iowa, New York, and Texas) or January 1, 2003 (U.S. states 

North Carolina and Utah) and December 31, 2007. Our study population included all control 

children observed during this period and case children with an isolated (single) CHD and no 

extracardiac malformations.

CHDs were classified in the NBDPS by a team of clinicians with expertise in pediatric 

cardiology, genetics, and epidemiology. The classification process is described in detail 

elsewhere (Botto et al., 2007). Given the developmental, clinical, and epidemiological 

differences among CHDs, the goal of classification was to obtain reasonably large subgroups 

with minimal morphological heterogeneity. Thus, case children were classified according 

to heart defect type, complexity, and presence of non-CHD anomalies, with a detailed 

cardiac phenotype assigned to each case. From this phenotype, case children were mapped 

to complex multilevel CHD groupings.
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In this study, we examined four broad groups of CHDs as outcomes of interest: left 

ventricular outflow tract obstructive defects (LVOTO), right ventricular outflow tract 

obstructive defects (RVOTO, in this study excluding Ebstein’s anomaly), conotruncal 

defects, and septal defects. The number of septal defects among case children was such 

that we were able to include two septal defect phenotypes as specific outcome categories: 

secundum atrial septal defects (ASD-II) and perimembranous ventricular septal defects 

(VSDpm). We conducted separate analyses for each of these six outcomes (four broad defect 

groups and two septal subgroups) to maximize within-group etiologic homogeneity.

In alignment with NBDPS protocols, we use the term “mother” to refer to the parent of a 

case or control child with a biological and gestational relationship to that child. Mothers of 

case and control children participated in structured telephone interviews from 6 weeks to 

24 months after delivery. These were administered in English or Spanish and collected data 

on relevant demographic, health, and other pregnancy-related topics. Participant response for 

our study’s population was 69% among case mothers and 65% among control mothers.

2.2 Exposure and covariate assignment.

During the NBDPS interview, each mother reported a history of residential addresses from 

three months prior to estimated conception until delivery. Addresses reported from the entire 

history of the pregnancy were centrally geocoded for consistency across study centers by 

the Geospatial Research, Analysis, and Services Program of the United States Agency for 

Toxic Substances and Disease Registry. We then assigned environmental exposure levels 

to each mother using each address and corresponding dates of residence reported for 

postconceptional weeks 3 to 8, a recognized critical period for prenatal cardiac development 

(Schoenwolf et al., 2020). To estimate postconceptional weeks, we used the estimated 

due date provided by a physician and reported by each mother to calculate each infant’s 

gestational age at birth. Using gestational age at birth, we then estimated the date of 

conception and assigned corresponding calendar dates to each subsequent week.

We obtained data for our primary exposure of interest, ambient PM2.5, from the United 

States Environmental Protection Agency (EPA) Air Quality System. Assignment of PM2.5 

exposure levels to NBDPS participants is detailed in previous research (Stingone et 

al., 2014) and described here. Briefly, we mapped geocoded maternal residences during 

postconceptional weeks 3 to 8 to the nearest EPA PM2.5 monitor within 50 km (see Table 

S1 for distribution of distances to EPA PM2.5 monitor by case status). We averaged 24-hour 

PM2.5 measurements for each mother from weeks 3 to 8 of pregnancy, which yielded a 

single PM2.5 exposure estimate for the 6-week critical exposure period. PM2.5 records varied 

in temporal measurement density but were recorded, on average, approximately once every 

other day across PM2.5 monitors assigned to study participants.

Extreme heat exposure assignment is also detailed in prior NBDPS studies (Lin et al., 2018; 

Van Zutphen et al., 2012). We used geocoded maternal residences to map mothers to the 

closest weather station, with meteorological data for each station obtained from the National 

Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental 

Information (U.S. NOAA, 2020). We gathered data on daily maximum temperature and 

dewpoint temperature for this study. To assign maternal exposure to extreme heat days 
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(EHDs), we totaled the number of days above the 90th percentile for daily maximum 

temperature in the exposure window (postconceptional weeks 3 to 8) with respect to the 

maximum temperature distribution within a specific year, season, and weather station. We 

then used the number of days above the 90th percentile for maximum temperature as a 

cumulative measure of critical period EHD exposure based on relative heat.

In addition to our primary measure of extreme heat, we calculated three other metrics: our 

primary EHD measure calculated at the 95th percentile; a continuous measure in days of a 

mother’s longest exposure to an extreme heat event at the 90th percentile (EHE90, defined 

as ≥ 3 days above the 90th percentile for maximum temperature); and a continuous measure 

in days of a mother’s longest exposure to an EHE defined at the 95th percentile (EHE95, 

defined as ≥ 2 days above the 95th percentile for maximum temperature). We refit our 

models using these alternative heat measures as sensitivity analyses to assess the potential 

effects of cumulative heat exposure across consecutive days.

To account for humidity’s effect on apparent temperature, we included mean dewpoint 

temperature during the critical period as a covariate in all multivariable analyses that 

included EHDs as a covariate.

2.3 Confounder identification.

Potential confounders of the relationships between PM2.5, extreme heat, and CHDs have 

been considered in similar studies (Lin et al., 2018; Stingone et al., 2019, 2014; Van Zutphen 

et al., 2012). Our causal model included maternal PM2.5 exposure as the exposure of interest 

and offspring CHDs as the outcomes of interest, with maternal EHD exposure included as 

a potential confounder (Buckley et al., 2014). In interaction models, EHD exposure was 

also evaluated as a potential effect modifier of the PM2.5-CHD relationship (Stingone et al., 

2019; Zanobetti and Peters, 2015). For consistency across studies, we constructed a directed 

acyclic graph (DAG) (Greenland et al., 1999) using the same set of potential confounders 

evaluated in Stingone et al. (2019) and Lin et al. (2018): maternal race/ethnicity; maternal 

age at delivery; maternal education at delivery; maternal pre-pregnancy body mass index; 

maternal use of alcohol, caffeine, and/or tobacco during pregnancy; maternal use of hot 

baths, hot tubs, or saunas during pregnancy; maternal medical conditions during pregnancy, 

including fever, hypertension, and/or pregestational and gestational diabetes; maternal folic 

acid intake; parity; plurality; multiple birth; prenatal care; family history of CHDs; and 

regional mean dewpoint during the critical period. (See Supplemental Figures S1 and S2.)

As in Stingone et al. (2019), we identified maternal age at delivery (≤ 19, 20 to 34, ≥ 35 

years), maternal race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, other), 

maternal education level at delivery (< 12 or ≥ 12 years), and regional mean dewpoint during 

the critical period as confounders. We included these confounders, in addition to maternal 

EHD exposure, as covariates in all adjusted models.

2.4 Statistical analysis.

We analyzed our full study population in all statistical models. To account for seasonal 

differences among observations, we included an indicator of having at least one critical 

period day during the hot seasons (defined as March through August, i.e., spring and 
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summer) in adjusted full population models. Additionally, we fit models that included only 

the subpopulation of mothers with at least one critical exposure period day during spring 

or summer. Analyses of this subpopulation allowed us to focus on mothers most likely to 

experience exposure to extreme heat across study regions.

First, covariate-adjusted logistic regression models were fit to estimate the total effect of 

maternal exposure to PM2.5 on each CHD. Both PM2.5 in μg/m3 and EHDs (a potential 

confounder) were included as continuous terms, along with the covariates mentioned 

previously. From these models, we estimated odds ratios (ORs) and 95% confidence 

intervals (CIs) for the total effect of PM2.5 on odds of CHD in offspring.

Complex, potentially nonlinear relationships between PM2.5, temperature, and a range 

of health outcomes have been reported previously (Gasparrini et al., 2015; Zanobetti 

and Peters, 2015). Thus, we next constructed generalized additive models (GAMs), 

which allowed us to relax assumptions of logit-linearity imposed by logistic regression. 

Generalized linear models (GLMs), including logistic regression models, assume the mean 

of a response variable depends on a linear combination of model covariates via a link 

function. GAMs are more flexible, semi-parametric expansions of GLMs, in which model 

covariates may include smooth terms (Hastie and Tibshirani, 1986). We used the mgcv 
package (version 1.8) (Wood, 2017) in R to fit nonlinear penalized thin plate regression 

splines to both PM2.5 and EHD terms using GAMs, adjusted for the same parametric 

confounding terms used in our logistic models. Spline smoothing parameters for each model 

were estimated via minimization of an unbiased risk estimator (UBRE) (Wood, 2004). 

Effective degrees of freedom (EDF), an indicator of a spline’s complexity, were calculated 

for each penalized thin plate regression spline term, which were used to assess potential 

logit-nonlinear relationships between PM2.5, EHDs, and CHDs. A statistically significant 

spline term with EDF > 1 was interpreted to indicate a potential logit-nonlinear relationship, 

with p-values testing a null hypothesis of spline term equivalence to a null term.

To investigate nonlinear exposure-outcome relationships, we implemented a two-stage 

model selection process, similar to one outlined by Wood (Marra and Wood, 2011; Wood, 

2019). First, if a spline term was not significantly different than a null term at an alpha 

level of 0.05 (Wood, 2013), it was replaced with a parametric linear term. If, however, 

we estimated plausible nonlinearity as outlined above for any spline term, it was kept in 

the GAM. Second, we compared GAMs containing significant spline terms to their fully 

parametric (i.e., logistic regression) counterparts. To do this, we visually compared the 

predicted log-odds of CHD and 95% CIs in both GAMs and logistic models across values 

of the exposure of interest, PM2.5. Predicted log-odds were used to assess nonlinearity—as 

opposed to, e.g., ORs—because logistic models assume linearity on the log-odds scale. 

(Note that the difference between two log-odds is equivalent to a log-OR.) Therefore, 

potential nonlinearity in a GAM that includes spline terms will be most apparent on the 

log-odds scale because its spline-free GLM counterpart will be linear on this scale. If the 

predicted values of the two models did not significantly differ (i.e., there was no PM2.5 value 

at which the CIs for the models’ predicted log-odds of CHD did not overlap), we designated 

the logistic model as the final model to prioritize interpretability.
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Finally, we assessed interactions between PM2.5 and EHD exposure for each final model. 

Because there were no departures from logit-linearity that were significantly different from 

a parametric model, we estimated interaction effects using adjusted logistic regression 

models. We assessed interaction on the multiplicative scale by including a cross-product 

term between continuous measures of PM2.5 and EHD exposure. We tested cross-product 

terms for statistical significance using likelihood ratio tests (LRT). To visually represent 

multiplicative interaction in models with a significant cross-product term, we plotted 

conditional ORs at each observed EHD count, displaying the conditional effect of PM2.5 

on each CHD outcome. These plots were produced using the interplot package (Solt and 

Hu, 2019). Corresponding conditional parameter estimates and 95% CIs were estimated via 

the arm package, using 10,000 independent posterior model simulations (Gelman and Hill, 

2007).

We also estimated interaction on the additive scale by calculating the relative excess risk due 

to interaction on the OR scale (RERIOR) for each logistic model as follows: RERIOR = OR11 

− OR10 − OR01 + 1. In calculating RERI on the OR scale, we assumed our OR estimates 

approximated risk ratios (RRs). We interpreted RERIOR values above 0 as superadditivity 

and values below 0 as subadditivity. Although RERI is typically calculated using two 

dichotomous interacting variables, Knol et al. (2007) provide useful considerations for 

calculating this measure between continuous interacting variables. We estimated 95% CIs 

for each model’s RERIOR measure using 10,000 nonparametric bootstrap samples.

Parametric effect estimates for PM2.5 (including interaction terms) were calculated per 5 

μg/m3 increase in maternal exposure, an approximately interquartile range (IQR) increase 

for the study population. EHD exposure, when included in models as a potential confounder 

and/or effect modifier, was parameterized per 1-day increase in maternal exposure during 

the cardiac critical period. We conducted several sensitivity analyses to assess our final 

models’ robustness to outliers and confounding bias: (1) we refit our final GAMs and 

logistic interaction models excluding PM2.5 values above the 99.5th percentile for our data; 

(2) to address spatial variation and clustering effects, we refit each of our final interaction 

models as a generalized linear mixed effects model including a random intercept term for 

study center; and (3) we refit our models using the three alternative extreme heat measures 

described in Section 2.2.

Analyses were performed using R version 3.6 (R Core Team, 2020).

The NBDPS was approved by the Institutional Review Board of the Centers for Disease 

Control and Prevention and by each constituent study center. All subjects provided informed 

consent prior to participation. Consistent with NBDPS protocol, replication of selected 

analyses was performed and results compared to ensure data quality.

3. Results

3.1 Descriptive results.

Full population analyses included a total of 4,033 control and 2,824 case children. For the 

subpopulation of mothers with at least one critical period day during spring or summer, 
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analyses included 2,487 (62%) control and 1,747 (62%) case mothers. Case children were 

subdivided into broad CHD groups, with case numbers ranging from 447 (RVOTO) to 958 

(septal defects). We also analyzed two septal defect phenotypes, VSDpm and ASD-II. Table 

1 describes our analytic population by CHD outcome and demographic factors. (Tables were 

created using the R packages gtsummary (Sjoberg et al., 2020) and gt (Iannone et al., 2020).

Our maternal study population was predominantly non-Hispanic white (54.1%), with more 

than 12 years of education (58.6%) and an average age of 26.9 years at offspring conception. 

Mean maternal PM2.5 exposure across postconceptional weeks 3 to 8 was 13.7 μg/m3. 

This exceeds the annual exposure guidelines set by the World Health Organization (WHO, 

10 μg/m3) and the U.S. Environmental Protection Agency (EPA, 12 μg/m3) (U.S. EPA, 

2012; WHO, 2006), although maternal averages occurred over a shorter timespan than these 

annual guidelines. Mothers experienced an average of 3.35 days above the 90th percentile 

for maximum temperature during postconceptional weeks 3 to 8, with approximately 75% 

exposed to at least one EHD.

3.2 Logistic and generalized additive models.

Figure 1 displays adjusted ORs and 95% CIs for associations between maternal PM2.5 

exposure and CHDs, estimated using separate covariate-adjusted logistic regression models 

without interaction terms. We estimated ORs for both the full study population and the 

subpopulation described previously. Results did not differ appreciably across population 

analyzed or after adjustment for EHDs as a potential confounder. However, effect estimates 

differed by CHD, as expected given their divergent etiologies.

In Table 2, we present nonparametric results for GAMs by CHD and analytic population, 

adjusted for parametric covariate terms. For each model, the EDF and p-value for each 

spline term are presented (see Section 2.4). Models presented in Table 2 each included an 

EHD spline term as a potential nonlinear confounder; adjusted models without EHD spline 

terms did not differ appreciably from those presented (data not shown). Visual inspection of 

these splines aided in determining whether observed logit-nonlinearity appeared meaningful 

in this context (i.e., whether nonlinear models would appreciably improve our estimates of 

these relationships). Five of twelve fitted GAMs contained significant PM2.5 spline terms 

(see Table 2), which are plotted against log-odds of CHDs in Figure 2. (See Supplemental 

Figure S3 for other model plots.) Although the PM2.5 spline term in each of the models 

in Figure 2 significantly differed from a null term, none differed appreciably from its 

logistic counterpart, i.e., from the EHD-adjusted models presented in Figure 1 (comparison 

data not shown). Visual inspection of Figure 2 suggests that, in most instances, the non-

linearity appears most evident at high and low PM2.5 concentrations where data are sparse. 

Thus, although the possibility of logit-nonlinearity in the relationship between PM2.5 and 

CHDs remains, we did not investigate further. Instead, we prioritized model parsimony 

and interpretability by using fully parametric models in subsequent analyses, which we 

demonstrated to be comparable in estimating associations between PM2.5 and CHDs.
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3.3 Interaction models.

Table 3 details multiplicative interaction results from covariate-adjusted logistic regression 

models. In Table 3, interaction odds ratio estimates are not interpreted as effect estimates 

but are used to assess departures from multiplicativity. Values greater than 1 indicate 

positive multiplicative interaction between PM2.5 and EHDs. We observed slightly positive 

multiplicative interaction in the full population, and when we restricted to mothers with at 

least one critical period day during spring or summer, interaction point estimates moved 

further from the null.

Plots in Figure 3 display estimated PM2.5 coefficients conditional on EHD exposure, 

modelled separately against the two outcomes that exhibited significant multiplicative 

interaction between PM2.5 and EHDs in our subpopulation (see model results in Table 3). 

Note that VSDpm in this study comprises a subset (42%) of overall septal defects.

We observed that among our subpopulation of mothers with at least one critical period day 

during spring or summer, at low levels of EHD exposure, conditional log-odds of septal 

defects and VSDpm decreased with increasing maternal exposure to PM2.5 (i.e., an OR less 

than 1). However, at higher levels of EHD exposure, this association reversed. In Figure 

3, we observed that the conditional estimated OR for VSDpm given a 5 μg/m3 increase in 

PM2.5 exposure among those with zero EHDs was 0.80 (95% CI: 0.64, 1.02), but among 

mothers with the highest number of EHDs (15 days), the conditional estimated OR was 

1.54 (95% CI: 1.01, 2.41), holding adjusted covariates constant. Positive PM2.5-VSDpm 

associations were seen above EHD counts of 5 days. We observe a similar pattern in 

overall septal defects: among mothers experiencing zero EHDs, the conditional estimated 

OR given a 5 μg/m3 increase in PM2.5 exposure was 0.71 (95% CI: 0.61, 0.83), but among 

mothers experiencing 15 EHDs, the conditional estimated OR was 1.39 (95% CI: 1.00, 

1.93), holding adjusted covariates constant. Positive PM2.5-septal associations were seen 

above EHD counts of 8 days. However, these conditional results should be interpreted with 

caution, as only a small proportion of mothers experienced high numbers of EHDs (see 

Table S2).

In Table 4, we detail additive interaction estimates for adjusted logistic models, assessed 

via RERIOR. We derived these RERIOR estimates from the same models presented in Table 

3. Among mothers in our overall population, the estimated RERIOR for septal defects was 

0.0316 (95% CI: 0.0014, 0.0617). In other words, the odds ratio of a mother delivering a 

child with a septal defect was estimated to be 0.0316 units greater than if interaction were 

absent. The observed magnitude was greater in our subpopulation (RERIOR: 0.0676, 95% 

CI: 0.0214, 0.1137). Thus, we observed significant and positive departures from additivity 

between PM2.5 and EHDs for overall septal defects among both populations analyzed (see 

Table 4).

3.4 Sensitivity analyses.

We conducted several sensitivity analyses. First, to ensure our interaction models were 

robust to removal of extreme PM2.5 values, we refit them excluding the top 0.5th percentile 

of PM2.5 values (exposure levels above 45.5 μg/m3). This only altered our effect estimates 
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for our full population analyses, because our subpopulation already excluded these extreme 

PM2.5 values. We observed no appreciable changes in multiplicative interaction results 

(Supplemental Table S3), but RERIOR estimates were slightly attenuated for septal defects 

(Supplemental Table S4). Given the sensitivity of nonparametric splines to outliers, we 

also refit our GAMs without extreme PM2.5 values and observed no appreciable changes 

(Supplemental Table S5).

We analyzed data from eight state-level study centers for this study, each with varying 

exposure and outcome levels. To check robustness of our results to factors related to 

exposure and outcome that may covary across study centers, we fit generalized linear mixed 

effects models that included a random intercept for study center. Although some results 

changed slightly (e.g., the cross-product term in our final septal defects model decreased by 

approximately 17 percent, and some non-interaction point estimates were slightly changed), 

we observed the same direction and approximate magnitude of multiplicative interaction 

effect estimates (Supplemental Table S6). Like our sensitivity analyses with high PM2.5 

values removed, both multiplicative and additive interaction effect estimates were slightly 

attenuated for septal defects (Supplemental Table S7).

Finally, we refit each of our models using three alternative measures of extreme heat 

(see Section 2.2). For each measure, the magnitude and direction of PM2.5-extreme heat 

associations with CHDs was consistent with primary analyses (data not shown), although in 

some instances, there was a loss of precision. Conditional OR plots fit using these alternative 

heat measures can be found in Supplemental Figures S4–S6.

4. Discussion

4.1 Description and interpretation of results.

Our study provides evidence that duration of extreme heat and magnitude of PM2.5 exposure

—not simply presence or absence of these exposures—may be important considerations for 

offspring congenital heart defects. Although both environmental exposures are likely risk 

factors, our results suggest their joint effect may be disproportionately harmful to offspring 

health. Our results should be cautiously interpreted, as our study sample contained very few 

individuals exposed to the highest levels of extreme heat (e.g., only five case children and 

five control children were exposed to 15 days of extreme heat at the 90th percentile; see 

Table S2). However, global exposure to extreme heat will likely increase due to worsening 

climate change, thus increasing the number of pregnancies affected by extreme heat (Jones 

et al., 2015; Watts et al., 2021).

GAMs showed limited evidence of nonlinearity in the relationship between PM2.5 and 

log-odds of CHDs. Although further research is necessary to fully characterize potentially 

nonlinear relationships, our analyses provided evidence that logistic models were likely 

comparable in estimating these associations. Prior studies investigating environmental 

exposures and birth outcomes have adjusted for temperature or have estimated effects for 

both pollutants and temperature independently (Arroyo et al., 2016; Ebisu and Bell, 2012; 

Schifano et al., 2016). However, only a few studies (Stingone et al., 2019) have explicitly 

investigated interactions between these two exposures. The results of our study provide 
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limited evidence of such interactions between PM2.5 and extreme heat during pregnancy 

and provide justification for further analyses. Our results also suggest that lower, cumulative 

extreme temperatures for longer durations can modify the association between PM2.5 and 

septal defects, demonstrating the potential utility of a cumulative extreme heat measure 

alongside more established metrics such as EHEs.

Our results were generally consistent with prior literature. We built upon Stingone et al.’s 

analyses (Stingone et al., 2019) by using more robust, non-categorized measures to assign 

maternal exposure levels and by investigating and supporting assumptions of logit-linearity 

underlying logistic models. The previous study observed effect modification of PM2.5-CHD 

relationships by extreme heat when using a more restrictive operationalization, defined as 

occurrence of at least two consecutive days above the 95th percentile for daily maximum 

temperature during early pregnancy. In our study, we observed such effect modification 

using a less stringent definition, namely the total number of early pregnancy days above 

the 90th percentile for daily maximum temperature. We observed multiplicative effect 

modification in models with VSDpm and overall septal defects as outcomes, consistent 

with the previous study’s findings of effect modification with VSDpm. Greater than additive 

interaction was observed for all septal defects (overall septal defects, VSDpm, and ASD-II) 

in both populations analyzed, with RERIOR magnitudes greater among a subpopulation of 

mothers with at least one critical period day during spring or summer. RERIOR estimates 

in covariate-adjusted case-control studies should be interpreted cautiously, however, because 

RERI values may vary across covariate strata (Skrondal, 2003). Because septal defects were 

most common CHD in our sample, statistical power to detect effect modification may have 

been greater for models with this outcome.

Temperature modified some of our study’s effect estimates for PM2.5, which may provide 

clues as to why conflicting results are seen among studies. Prior studies that did not account 

for meteorological factors have reported inverse associations between PM2.5 and septal 

defects (Padula et al., 2013; Schembari et al., 2014; Vinikoor-Imler et al., 2015; Yang et 

al., 2021). However, even when accounting for modification by extreme heat in our models, 

we still observed an inverse conditional association between PM2.5 and septal defects given 

low EHD levels. There are several potential explanations for this. Ito et al. (2007) discussed 

multicollinearity among air pollution and meteorological variables, with interrelationships 

sometimes changing by season. Although we conducted subanalyses during the spring/

summer season, collinearity between PM2.5 and other important, unmeasured exposures

—or with varying subcomponents of PM2.5 itself—could still account for these inverse 

relationships. Case ascertainment bias may also partially explain inverse PM2.5-septal defect 

relationships, by which wealthier areas with lower pollution levels have better healthcare and 

diagnostics to detect CHDs. This bias could persist despite adjustment for meteorological 

variables. Finally, by using logistic regression models, we are imposing linearity on our 

exposure covariates. If the dose-response curve for PM2.5 and septal defects is flatter at 

low EHD levels, a linear model could create the appearance of an inverse PM2.5-septal 

relationship at low EHD levels. Although our GAMs did not exhibit strong nonlinearity, 

complexities in these relationships may still exist and may clarified by more precise studies.
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Our findings of positive interaction on both the multiplicative and additive scales are 

consistent with Stingone et al.’s (2019) findings in the same study population. Although 

their measures of PM2.5 and extreme heat were dichotomized, they observed increased odds 

of VSDpm only among mothers experiencing both high average PM2.5 (> 17.1 μg/m3) and 

an extreme heat event (2+ days above the 95th maximum temperature percentile) during 

postconceptional weeks 3 to 8. Other research supports the potential for heat to modify the 

negative health effects of pollutant exposure. Jiang et al. (2021) reported additive interaction 

between ambient heat exposure defined at the 75th and 90th percentiles and PM2.5 on overall 

CHDs. Zhang et al. (2018) reported positive interactions between PM2.5 and increased 

ambient temperature on emergency department visits in Beijing, and in a large study of U.S. 

Medicare enrollees, Kioumourtzoglou et al. (2015) reported that PM2.5 had a stronger effect 

on mortality in warmer cities.

Research on heat-PM2.5 interactions is supported by prior research separately investigating 

associations of PM2.5 and extreme heat with CHDs. A recent study of the NBDPS 

population by Lin et al. (2018) reported an association between a greater number of maternal 

critical period EHDs and VSDs. Outside the NBDPS, Auger et al. (2017) reported positive 

associations between measures of maternal extreme heat exposure and ASDs in Quebec, 

as did Agay-Shay et al. (2013) in Israel. Our results also coincide in part with two recent 

registry-based studies reporting PM2.5-CHD associations: a Toronto-based study reported 

positive associations between critical period PM2.5 and VSDs (Lavigne et al., 2019), and a 

Taiwan-based study reported positive associations between PM2.5 and ASDs, in addition to 

endocardial cushion defect and pulmonary artery and valve stenosis (Huang et al., 2019).

Prior research also supports the biological plausibility of our findings. Experimental 

laboratory and epidemiological studies have consistently linked maternal air pollution 

(Huang et al., 2019; Kavlock et al., 1980; Longo, 1977; Padula et al., 2013; Stingone 

et al., 2019, 2014; Tanner et al., 2015) and extreme heat (Bennett, 2010; Edwards et 

al., 2003; He et al., 2016; Milunsky et al., 1992; Zhang et al., 2017) exposure with 

a range of birth defects in offspring. Research as early as the 1960s demonstrated dose-

response relationships between severity of neural tube and other congenital defects and 

in utero extreme heat exposure in rats and guinea pigs (Edwards et al., 2003). However, 

exact biological mechanisms remain unclear, with evidence suggesting multiple complex 

pathways, including inflammation, cell death, inhibited cell proliferation, and placental and 

circulatory disruption (Bennett, 2010). Air pollution has been similarly studied with respect 

to birth defects, with potential disease pathways including acute in utero inflammation, 

extracellular matrix remodeling (Tanwar et al., 2017), impaired organogenesis, and placental 

dysfunction (Wu et al., 2019). As noted above (see Section 1), synergistic effects between 

these two environmental exposures have been previously reported, but the underlying 

mechanisms of interaction remain unclear. Potential explanations relevant to this study 

include seasonal changes in particulate matter composition, increased susceptibility to 

ambient pollutants due to heat stress, and shared teratogenic pathways (Bell et al., 2007; 

Gordon, 2003; Hänninen and Jantunen, 2007).
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4.2 Study strengths.

A strength of this study was its use of a standardized CHD classification system. The 

system allowed us to analyze case groups of reasonable size and etiologic homogeneity, 

which may not be true for studies observing diagnoses from a range of facilities and 

clinicians. In a recent meta-analysis of studies investigating PM2.5 and CHDs, Hu et al. 

(2020) reported strong evidence of heterogeneity among effect estimates, most consistently 

for septal defect outcomes. Although some of this heterogeneity could be due to differences 

in study populations, published literature varies widely in CHD classification methodologies 

(Botto et al., 2007), as well as inclusion criteria, which may lead to differing effect estimates 

among studies. Another strength of this study, and of the NBDPS overall, was its geographic 

diversity. Unlike studies based in a single city, ours evaluated data from across eight U.S. 

states, representing six of the country’s nine climate regions. Maternal addresses were 

centrally geocoded and matched to environmental exposures for each address and timeframe 

of residence, decreasing potential measurement error by accounting for changes of address 

during pregnancy.

4.3 Study limitations.

Our effect estimates may have been affected by assignment of exposure levels to mothers. 

We aggregated maternal PM2.5 exposure estimates across postconceptional weeks 3 to 8, 

assigning a single value to each mother. This aggregate operationalization reduced precision 

and may have resulted in exposure misclassification, given that temporality of exposure is an 

important consideration within the embryonic cardiac critical period (Stingone et al., 2014). 

The difference between actual and measured PM2.5 concentrations could have introduced 

bias, in addition to residential distance from a mother’s assigned PM2.5 monitoring station. 

We used a maximum distance of 50 km between maternal residence and PM2.5 monitor to 

balance tradeoffs inherent to nearest-monitor methods: smaller distances introduce sample 

size concerns, and larger distances may increase exposure misclassification. Median distance 

from maternal residence to PM2.5 monitor was approximately 10 km (see Table S1). Prior 

research in our sample demonstrated overall consistent PM2.5-CHD relationships when data 

were limited to PM2.5 monitors within 10 km of mothers’ residences, with some increases 

in effect size (Stingone et al., 2014). Other sources of potential exposure misclassification 

include spatial variation in PM2.5 and its component subchemicals (Bell et al., 2007) and 

maternal time spent indoors or away from home. Even indoors, exposure levels may have 

differed spatially and by maternal socioeconomic status, e.g., via prevalence of or access 

to air conditioning. Certain maternal occupations could also confer additional risk through 

increased exposure to both air pollution and extreme heat, but due to low prevalence of such 

occupations within the NBDPS, we were unable to investigate this in our study.

These limitations similarly apply to our assignment of EHDs. First, it is important to 

reiterate that our measure of extreme heat was relative, based on temperature percentiles 

calculated with respect to year, season, and weather station. In future studies, other factors 

(e.g., spatial considerations, or relative versus absolute heat) may also be important in 

determining how extreme heat is operationalized because the utility of different measures 

may differ by geography and relevant research question (Vaidyanathan et al., 2016). Mean 

residential distance to the nearest weather station also differed by region, with mothers 
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in the northeast closest (15.75 km for cases and 16.67 km for controls) and those in 

the southeast farthest (60.61 km for cases and 58.11 km for controls), which may have 

introduced bias. Sensitivity analyses conducted in the NBDPS population demonstrated 

only small differences in extreme heat effect estimates when maximum residential distance 

from weather station was varied (Lin et al., 2018). Overall, there is ongoing debate as to 

the optimal means of ambient exposure assessment for individuals, and researchers must 

consider the potential for bias with each method (Weisskopf and Webster, 2017). Despite 

tradeoffs between aggregate and personal exposure assessment, we believe that more refined 

exposure assessment techniques than the standard nearest-monitor methods would have 

decreased measurement error (and potentially bias) in our study (Yu et al., 2018).

Despite the advantageous system of CHD classification implemented by the NBDPS, it 

is important to consider differential case distribution and its potential to bias our results. 

If, for example, hospitals in geographic regions with relatively high levels of PM2.5 or 

EHD exposure reported relatively more septal defects—the most common CHD in our 

sample—then unmeasured confounding or differential outcome misclassification could have 

biased our results away from the null. Bias at the study center (i.e., state) level may 

be less likely to have affected our results, as a sensitivity analysis of final models that 

included a random intercept term for study center yielded estimates of similar direction 

and magnitude. However, it is important to note that our exposures of interest vary across 

study centers. Thus, adjusting for this variation by including random intercept for study 

center as we did in our sensitivity analyses (Supplemental Tables S6 and S7) may have 

masked some of the meaningful exposure effects. Studies with larger sample sizes that can 

include both a random intercept for study site and random slopes, thereby even more fully 

accounting for both within-state and between-state variation, may address this limitation 

more effectively. Although we partially accounted for between-state variation in sensitivity 

analyses, within-state spatial variation still exists for many factors such as income, racial and 

ethnic makeup, residential and transportation access and infrastructure, relevant policies, and 

access to health services. If such uncontrolled spatially varying factors increased likelihood 

of both offspring CHD and maternal exposure to PM2.5 or EHDs, they could have spuriously 

contributed to our observed associations. Issues of selection also could have influenced our 

results, e.g., due to differential participation rates among participant subgroups dependent 

on one or more exposures (Reefhuis et al., 2015). Finally, we analyzed six CHD outcomes 

among two subpopulations, producing many analytic results. Thus, we cannot discount 

random error as a contributor to our findings.

4.4 Conclusions and future research.

This study adds to existing knowledge regarding PM2.5, extreme heat, and CHDs. It 

provides some evidence of positive effect modification by extreme heat of the PM2.5-CHD 

relationship and emphasizes the potential importance of cumulative extreme heat exposure. 

However, some results merit further investigation, including inverse conditional effect 

estimates with certain CHDs. Future studies should prioritize more accurate and precise 

measurement of maternal exposures, with consideration given to PM2.5 variability and 

extremes, multiple exposures, and exposure mixtures with respect to risk of CHDs.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Duration of extreme heat during pregnancy may modify the impact of air 

pollutants.

• Potential nonlinear associations were assessed using generalized additive 

models.

• Longer-duration heat exposure increased some PM2.5-heart defect 

associations.
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Figure 1. 
Adjusted ORs and 95% confidence intervals for effect of PM2.5 on CHDs. We fit 

multivariable logistic regression models across our full study population and our analytic 

subpopulation of mothers with 1+ day of gestational weeks 3–8 during spring/summer, 

and by adjustment for extreme heat days (EHDs). All models adjusted for maternal race/

ethnicity, age, and education. Full-population models also adjusted for mother having at 

least 1 day of gestational weeks 3–8 of pregnancy during spring/summer.

Abbreviations: PM2.5, fine particulate matter; CHD, congenital heart defect; EHD, extreme 

heat day; LVOTO, left ventricular outflow tract obstruction; RVOTO, right ventricular 

outflow tract obstruction; VSDpm, perimembranous ventricular septal defect; ASD-II, 

secundum atrial septal defect.
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Figure 2. 
Log-odds of CHDs by maternal PM2.5 exposure: penalized spline terms from covariate-

adjusted generalized additive models (GAMs). To further assess nonlinearity, log-odds and 

95% confidence intervals for CHDs were plotted using penalized spline terms from each 

model containing a significant spline term for PM2.5. These were compared with fully 

parametric logistic regression models (plots not shown). All models adjusted for maternal 

age, race/ethnicity, education, and mean dew point. Full-population models also adjusted for 

mother having at least 1 day of gestational weeks 3–8 of pregnancy during spring/summer. 

Change in x-axis range between full population and subpopulation due to differences in 

maximum PM2.5 exposure.

Abbreviations: CHD, congenital heart defect; PM2.5, fine particulate matter; EHD, extreme 

heat day; LVOTO, left ventricular outflow tract obstruction; ASD-II, secundum atrial septal 

defect.
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Figure 3. 
Effect of maternal PM2.5 exposure on CHD outcomes, conditional on EHD exposure. We 

plotted odds ratios for the effect of PM2.5 exposure on CHDs, conditional on EHD exposure. 

A histogram displays the distribution of EHDs in each model. Both models were fit in the 

subpopulation of mothers with 1+ day of gestational weeks 3–8 during spring or summer. 

Both models adjusted for maternal age, race/ethnicity, education, and mean dew point. 

Estimates and 95% confidence intervals calculated using 10,000 model simulations.

Abbreviations: PM2.5, fine particulate matter; CHD, congenital heart defect; EHD, extreme 

heat day; VSDpm, perimembranous ventricular septal defect.
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